Some calculations of topological invariants for complex manifolds.

Def. An almost complex manifold is a manifold together with the structure of a complex vector bundle on its tangent bundle. That is, there is a complex vector bundle \(E \to M \) and an isomorphism of real vector bundles

\[
E \cong TM
\]

where \(E \) is the underlying real vector bundle of \(E \).

It is equivalent to say how \(i = \sqrt{-1} \) acts on \(TM \). This is encoded by endomorphism \(J \in \Gamma(\text{End}(TM)) \) such that \(J^2 = -I \) (called an almost complex structure)

Def. A complex manifold structure on \(M \) is given by an atlas

\[
M = \bigcup_{\alpha \in I} U_{\alpha}
\]

with charts \(\varphi_{\alpha} : U_{\alpha} \to \mathbb{C}^n \)

such that the transition maps \(\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha \cap U_{\beta}}) \to \varphi_{\beta}(U_{\alpha \cap U_{\beta}}) \)

are holomorphic, so the differential is complex-linear.

Observations

(i) It is clear that a complex manifold is an almost complex manifold (structure is preserved by coordinate changes)
(ii) A complex manifold of dimension \(n \) is also a real manifold of dimension \(2n \).

(iii) A complex manifold has a canonical orientation:

Let \(e_1, e_2, \ldots, e_n \) be a \(C \)-basis for \(T_p M \)
then \(e_1, ie_1, e_2, ie_2, \ldots, e_n, ie_n \) is an oriented \(R \)-basis for \(T_p M \).

(iv) Similarly, the oriented intersection of two transverse complex submanifolds in a complex manifold is always positive.

Examples: (i) Affine space \(C^n \)

(ii) Complex projective space \(\mathbb{CP}^n = (C^{n+1} \setminus \{0\}) / C^* \quad (C^* = C \setminus \{0\}, \text{multiplicative group}) \)

\[
= \bigvee^{2n+1} / \bigvee^1 \\
= \{ \text{complex lines through } 0 \text{ in } C^{n+1} \}
\]

The coordinates \((x_0, x_1, \ldots, x_n) \in C^{n+1} \) become homogeneous coordinates on \(\mathbb{CP}^n \): a point \(z \in \mathbb{CP}^n \) is described by an \((n+1) \)-tuple \((x_0 : x_1 : \ldots : x_n) \), where \(x_i \) are not all zero and we identify \((x_0 : x_1 : \ldots : x_n) = (\lambda x_0 : \ldots : \lambda x_n) \) \(\lambda \in C^* \)

The subset where \(x_1 \neq 0 \) is isomorphic to \(C^n \) via the map

\[
\begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} \mapsto \left(\frac{x_0}{x_1}, \ldots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \ldots, \frac{x_n}{x_i} \right)
\]

Since these sets cover \(\mathbb{CP}^n \) (and transition are holomorphic), \(\mathbb{CP}^n \) is a complex manifold.
(iii) Any homogeneous polynomial in $x_0, ..., x_n$ defines a subset of \mathbb{CP}^n.

Let $f(x_0, ..., x_n)$ be a homogeneous polynomial of degree d (e.g. $f = x_0^d + ... + x_n^d + x_0 x_3^d - 2 + etc.$).

Since $f(\lambda x_0, ..., \lambda x_n) = \lambda^d f(x_0, ..., x_n)$, we see that $f(\lambda x_0, ..., \lambda x_n) = 0 \iff f(x_0, ..., x_n) = 0$.

Thus the set $V(f) = \{(x_0, ..., x_n) \in \mathbb{CP}^n \mid f(x_0, ..., x_n) = 0\}$ makes sense. $V(f)$ is called the vanishing locus of f.

If $f, \frac{\partial f}{\partial x_0}, ..., \frac{\partial f}{\partial x_n}$ never all vanish simultaneously, $V(f)$ is a complex submanifold of \mathbb{CP}^n.

We want to compute various topological invariants of \mathbb{CP}^n and $V(f)$:

- Chern classes $c_i(M) = c_i(TM) \in H^{2i}(M)$
- Betti numbers $b_i(M) = \dim_{\mathbb{R}} H_i(M; \mathbb{R})$
- Euler characteristic $\chi(M) = \sum_{i=1}^{\dim M} (-1)^i b_i$

We will not use the definition of c_i in terms of curvature, but rather some axioms for Chern classes:

Axiom 1: $c_i(E) \in H^{2i}(M, \mathbb{Z})$ can put \mathbb{R} here and use de Rham. $c_0(E) = 1$ and $c_i(E) = 0$ for $i > \text{rank}_E$.

Axiom 2: If $E \to F$ is a pull-back: $f^* F \cong E$,

\downarrow \hspace{1cm} \downarrow

$M \xrightarrow{f} N$

then $f^* c_i(F) = c_i(E)$ (i.e. $c_i(f^* F) = f^* c_i(F)$)
\[A \text{xi} \overset{3}{=} \quad C(E \oplus F) = C(E)C(F) \]
\[\text{i.e.} \quad C_k(E \oplus F) = \sum_{i=0}^{k} C_i(E).C_{k-i}(F) \]

\[A \text{xi} \overset{4}{=} \quad C_1(L) = -h \quad \text{where} \quad L \to CP^1 = S^2 \]
\[\text{is the tautological line bundle, and} \quad h \in H^2(CP^2) \]
\[\text{is the class such that} \quad \int_{CP^2} h = 1 \]

For any projective space \(CP^n \), there is a tautological line bundle \(L = \{ (x, l) \mid l \text{ a line in } C^{n+1}, x \in CP^n \} \)
\[CP^n = \{ l \mid l \text{ a line in } C^{n+1} \} \]
whose fiber at a point is the line represented by that point.

All 4 axioms can be checked from the definition via curvature. The actually characterize the Chern classes uniquely.

For today's calculations, we will also need the facts

(1)\(\text{The cohomology of } CP^n \text{ is} \)
\[H^*(CP^n; \mathbb{R}) = \mathbb{R} \left[h \right] / (h^{n+1}) = \langle 1, h, h^2, \ldots, h^n \rangle \]
where \(h \in H^2(CP^n; \mathbb{R}) \) satisfies \(\int_{CP^1} h = 1 \)

[so \(h^i \in H^{2i}(CP^n; \mathbb{R}) \) is a basis, and \(H^{2i+1}(CP^n; \mathbb{R}) = 0 \).] \[CP^1 \text{ sits inside } CP^n \text{ as the set of points } (x_0 : x_1 : 0 : \ldots : 0) \]

(2) \(\text{Gauss-Bonnet-Chern theorem. If } M \text{ is a compact almost complex manifold of complex dimension } n, \text{ then} \)
\[\int_M C_n(TM) = X(M) \]
(III) Lefschetz hyperplane theorem: \(V(f) \subset \mathbb{CP}^n \)

(\(V(f) \) has complex dimension \(n-1 \) and real dimension \(2n-2 \).)

The Betti numbers of \(V(f) \) are the same as those of \(\mathbb{CP}^n \) below the middle dimension:

\[
b_i(V(f)) = b_i(\mathbb{CP}^n) \quad \text{for} \quad i < n-1
\]

(IV) for line bundles \(L_0, L_1 \) over \(M \), \(c_1(L_0 \otimes L_1) = c_1(L_0) + c_1(L_1) \)

Let's calculate! (A) let \(L \to \mathbb{CP}^n \) be the tautological line bundle

let \(f: \mathbb{CP}^1 \to \mathbb{CP}^n \) be the inclusion

\((x_0; x_1) \mapsto (x_0; x_1; 0; \ldots; 0)\)

By (I) \(c_1(L) = \alpha h \) for some \(\alpha \in \mathbb{R} \)

by axiom 2: \(f^*h = f^*(\alpha h) = f^*c_1(L) = c_1(f^*L) \)

but \(f^*L \) is isomorphic to the tautological bundle on \(\mathbb{CP}^1 \)

so axiom 4 implies \(\alpha f^* h \) integrates to \(-1\) on \(\mathbb{CP}^1 \)

\[
-1 = \int_{\mathbb{CP}^1} \alpha f^* h = \alpha \int_{\mathbb{CP}^1} f^* h = \alpha \quad \text{so} \quad \alpha = -1
\]

Thus \(c_1(L) = -h \) (for any projective space)

(B) Chern classes of \(\mathbb{TCP}^n \):

\(L \) tautological line bundle is a subbundle of \(\mathbb{C}^{n+1} \) the trivial bundle, let \(L^+ \subset \mathbb{C}^{n+1} \) be the orthogonal complement (wrt. hermitian metric)

Fact: \(\mathbb{TCP}^n \simeq \text{Hom}(L, L^+) \)

Now \(\text{Hom}(L, L) \simeq \mathbb{C} \) is trivial, so we add it to both sides.

\[
\mathbb{TCP}^n \oplus \mathbb{C} = \text{Hom}(L, L^+) \oplus \text{Hom}(L, L)
\]

\[= \text{Hom}(L, L^+ \otimes L) = \text{Hom}(L, \mathbb{C}^{n+1})
\]

\[= L^+ \otimes \mathbb{C}^{n+1} = L^+ \otimes \ldots \otimes L^+ \text{ (n times)}
\]
Since $\mathcal{L} \cdot \mathcal{L}^\vee \cong \text{Hom}(\mathcal{L}, \mathcal{L}) \cong \mathcal{O}$, \(IV \) implies
\[
c_i(\mathcal{L}^\vee) = -c_i(\mathcal{L}) = h_i^n.
\]
So
\[
c(\mathcal{TCP}^n \oplus \mathcal{O}) = c(\mathcal{L}^\vee \oplus \cdots \oplus \mathcal{L}^\vee)
\]
\[
c(\mathcal{TCP}^n) c(\mathcal{O}) = c(\mathcal{L}^\vee)^{n+1}
\]
\[
c(\mathcal{TCP}^n) = (1 + h)^{n+1}
\]
\[
c_i(\mathcal{TCP}^n) = \binom{n+1}{i} h^i \quad \text{for} \quad i = 1, 2, \ldots, n
\]
in particular
\[
c_n(\mathcal{TCP}^n) = \binom{n+1}{n} h^n = (n+1) h^n \quad \text{and} \quad \int c_n = n+1 = \chi(\mathcal{TCP}^n) \quad \text{as expected by (II)}.
\]

\(\circ \) \(V(f) \):
\[
\text{if a homogeneous polynomial of degree } d
\implies f \text{ is a section of } (\mathcal{L}^\vee)^{\otimes d}
\]
\(V(f) \) is the intersection of \(f \) with the zero section.
the vertical component of the derivatives of \(f \)
identifies the normal bundle to \(V(f) \) with the line bundle restricted to \(V(f) \)

\text{let } i : V(f) \to \mathbb{C}P^n \text{ be the inclusion}

We have
\[
i^* \mathcal{TCP}^n \cong TV(f) \oplus i^*(\mathcal{L}^\vee)^{\otimes d}
\]

So
\[
c(i^* \mathcal{TCP}^n) = c(TV(f)) c(i^*(\mathcal{L}^\vee)^{\otimes d})
\]
\[
i^*(1 + h)^{n+1} = c(TV(f)) i^*(1 + d \cdot h)
\]
\[
(1 + i^* h)^{n+1} = c(TV(f)) (1 + d (i^* h))
\]
Note also that \[\int_{V(f)} h^{n-1} = d \]

More specific example: let \(V(f) \) be 1-dimensional in \(\mathbb{CP}^2 \).
What is the genus of \(V(f) \) as a surface, in terms of \(d \)?

\[
\begin{align*}
(1 + h)^{2t+1} &= c(TV(f)) (1 + dh) \\
1 + 3h &= c(TV(f)) (1 + dh) \\
c(TV(f)) &= (1 - dh) (1 + 3h) \\
&= 1 + (3 - d)h \\
\text{So } c_1(TV(f)) &= (3 - d)h
\end{align*}
\]

\[
X(V(f)) = \int_{V(f)} (3 - d)h = (3 - d)d
\]

But \(X(V(f)) = 2 - 2g \), so \(2 - 2g = (3 - d) \cdot d \)

\[
g = \frac{(d - 1)(d - 2)}{2}
\]

\[
\begin{array}{c|cccccc}
 d & 1 & 2 & 3 & 4 & 5 & 6 \\
g & 0 & 0 & 1 & 3 & 6 & 10 \\
\end{array}
\]