The length-minimizing property of geodesics.

Recall exponential map \(\exp : \mathcal{U} \to \mathcal{M} \), domain \(\mathcal{U} \subset T\mathcal{M} \)

\((q,v) \mapsto \exp_q(v) \)

- \(\exp_q(v) = \gamma(1) \) where \(\gamma(t) \) is a geodesic with \(\gamma(0) = q \), \(\gamma'(0) = v \).

- The geodesics starting at \(q \in \mathcal{M} \) are all of the form \(\gamma(t) = \exp_q(tv) \) for various tangent vectors \(v \in T_q\mathcal{M} \).

Prop: the length of \(\gamma(t) = \exp_q(tv) \) between \(t=a \) and \(t=b \) is

\[L(\exp_q(tv)|[a,b]) = (b-a) \|v\|_g \]

Proof: The speed of \(\gamma \) is \(\|\dot{\gamma}\|_g \), and thus is constant.

\[\frac{d}{dt}(\|\dot{\gamma}\|_g^2) = \frac{d}{dt} g(\dot{\gamma}, \dot{\gamma}) = 2g(D/dt(\dot{\gamma}), \dot{\gamma}) = 0 \]

Since \(\dot{\gamma}(0) = v \), \(\|\dot{\gamma}(t)\| = \|v\|_g \) for all \(t \).

So \(L = \int_a^b \|\dot{\gamma}\|_g \, dt = \int_a^b \|v\|_g \, dt = (b-a) \|v\|_g \)

Now recall the ODE theorem, which says that for any compact subset \(\mathcal{K} \subset T\mathcal{M} \), there is an \(\varepsilon > 0 \) such that \(\exp_q(\varepsilon v) \) exists for any \((q,v) \in \mathcal{K} \). This implies that for any \(p \in \mathcal{M} \), there is a neighborhood \(V \) of \((p,0) \) in \(T\mathcal{M} \) such that the exponential map is defined on \(V \).
Proof: Let R a compact subset of M containing p; take

$$K = \{ (q,v) \in TM \mid q \in R, \|v\|_q \leq 1/3 \},$$

which is compact.

Find $\epsilon > 0$ as above; set $V = \{ (q,v) \in TM \mid q \in \text{Int}(R), \|v\|_q < 3\epsilon \}$.

Differential topology of exp: The main thing to see next is that sufficiently close points in M can be joined by a unique shortest geodesic. (That is, a path which is shortest among geodesics. Later we show that this is in fact the shortest path.)

Lemma: For each $q \in M$, there is an open set $U_q \subset TM$ such that $q \in U_q$ and $\exp: U_q \to M$ is a diffeomorphism onto its image.

Proof: By the inverse function theorem, it suffices to check that the derivative $D(\exp)_q: T_q(M) \to T_{\exp(q)}M$ is an isomorphism.

An element of $T_q(M)$ is just a tangent vector $v \in T_qM$. Since \exp_q maps the path $(t \mapsto tv)$ to $(t \mapsto \exp_q(tv))$, we see

$$D(\exp)_q(v) = \left. \frac{d}{dt} (\exp_q(tv)) \right|_{t=0} = v.$$

In conclusion, $D(\exp)_q$ is the identity map, suitably interpreted. In particular it is an isomorphism.

Taking this argument further, we get

Theorem: For every $p \in M$ there is a neighborhood W and a number $\epsilon > 0$ so that

1. Any $q, q' \in W$ are joined by a unique geodesic of length $< \epsilon$.
(2) Let \(v(q, q') \) denote the unique vector \(v \in T_qM \) of length \(< \varepsilon \) such that \(\exp_q(v) = q' \) [This exists by (1)]. Then \((q, q') \mapsto v(q, q') \) is a smooth map \(W \times W \to TM \).

(3) For each \(q \in W \), \(\exp_q \) maps the open \(\varepsilon \)-ball in \(T_qM \) diffeomorphically onto \(U_q \supset W \).

Proof

Introduce local coordinates \((x^1, \ldots, x^n) \) on \(M \) near \(p \).

We get local coordinates \((x^1, \ldots, x^n, y^1, \ldots, y^n) \) on \(TM \) near \((p, 0) \),

where \(v \in T_pM \) looks like \(v = \sum_{i=1}^n y^i \frac{\partial}{\partial x^i} \).

Recall the neighborhood \(V \) of \((p, 0) \) on which \(\exp \) is defined.

Define \(F : V \to M \times M \)

\((q, v) \mapsto (q, \exp_q(v)) \)

Consider \(DF_{(p, 0)} : T_{(p, 0)}(TM) \to T_{(p, p)}(M \times M) \)

Coordinates on \(M \times M \) near \((p, p) \) are \((x^1, \ldots, x^n, y^1, \ldots, y^n) \)

Since \(D(\exp_p)_0 = (\text{identity}) \), we find

Base \(DF_{(p, 0)} \left(\frac{\partial}{\partial x^i} \right) = \frac{\partial}{\partial x^i} + \frac{\partial}{\partial x^2} \left[(p, p) \rightarrow (p', p') \right] \)

Fiber \(DF_{(p, 0)} \left(\frac{\partial}{\partial y^i} \right) = \frac{\partial}{\partial x^i} \)

Thus, \(DF_{(p, 0)} \) is an isomorphism.
By the inverse function theorem, F maps some neighborhood V' of (p, o) diffeomorphically onto a neighborhood of $(p, p) \in M \times M$.

V' contains a smaller open set V'' of the form

$$V'' = \{ (q, y) \mid q \in U, \| y \| < \varepsilon \}$$

where $p \in U \subset M$ open.

Let W be an open set $p \in W \subset M$ such that $F(V'') \subset W \times W$.

Let's check that (1), (2), (3) are satisfied.

(1) Take $(q, q') \in W \times W$. Then $F^{-1}(q, q') = (q, y)$ where y satisfies

- $\| y \| < \varepsilon$
- $\exp_q(y) = q'$

Thus q and q' are joined by a geodesic $\exp_q(tv)$ of length $\| v \| < \varepsilon$.

To see uniqueness, suppose $\exists W$ of length $< \varepsilon$ such that $\exp_q(w) = q'$ Then $(q, w) \in V''$ and $F(q, w) = F(q, y)$. Since F is a diffeo on V'' $\forall = W$.

(2) The map in question is just F^{-1}, which is smooth by the inverse function theorem.

(3) For fixed q, the set $\{ \exp_q(v) \mid \| v \| < \varepsilon \}$ certainly contains W by (1).

Also for fixed q, F maps $q \times \{ v \in W \mid \| v \| < \varepsilon \}$ to $q \times \{ \exp_q(v) \mid \| v \| < \varepsilon \}$ since F is a diffeo, we're done.

$B(q, r) = \{ \exp_q(v) \mid \| v \| < r \}$ is called the geodesic ball with center q and radius r. The set $S(q, r) = \{ \exp_q(v) \mid \| v \| = r \}$ is called the geodesic sphere.
GAUSS' Lemma: For small values of the radius r, the geodesics emanating from q are perpendicular to the geodesic spheres $S(q,r)$.

Proof: Choose $\epsilon > 0$ and W as before.

Let $\gamma : [0, 1] \to T_qM$ be any path with $\|\gamma(s)\| = r < \epsilon$.

Then $\alpha(s, t) = \exp_q(t \cdot \gamma(s))$ is a parameterized surface, which is a variation of the geodesic $\gamma(t) = \alpha(0, t) = \exp_q(t \cdot \gamma(0))$.

Now $\alpha(s, 1) \in S(q, r)$.

![Diagram of geodesics and spheres]

Note that we can pick α so that $\gamma = \alpha(0, t)$ is any geodesic emanating from q, and so that $\frac{d\gamma}{dt}(0)$ is any tangent vector to $S(q, r)$.

Consider energy $E(s) = E(\alpha(s, -)) = \int_0^1 \left\| \frac{d\alpha}{dt} \right\|^2 dt$.

By the variational formula,

$$\frac{d}{ds} E(s) \bigg|_{s=0} = -2 \int_0^1 g \left(\frac{\partial \alpha}{\partial s}(0, t), \frac{d\gamma}{dt}(0) \right) dt$$

$$+ g \left(\frac{\partial \alpha}{\partial s}(0, 1), \frac{d\gamma}{dt}(1) \right) - g \left(\frac{\partial \alpha}{\partial s}(0, 0), \frac{d\gamma}{dt}(0) \right)$$

$$= g \left(\frac{\partial \alpha}{\partial s}(0, 1), \frac{d\gamma}{dt}(1) \right)$$
The integral vanishes because \(\gamma \) is a geodesic.

Also \(\alpha(s_0) = 0 \) so \(\frac{\partial \alpha}{\partial s}(0, 0) = 0 \).

On the other hand

\[
E(s) = \int_0^1 \left\| \frac{\partial \alpha}{\partial s}(s, t) \right\|^2 dt = \int_0^1 \left\| \frac{d}{dt} \exp(tv(s)) \right\|^2 dt
\]

\[
= \int_0^1 \|v(s)\|^2 dt = \int_0^1 r^2 dt = r^2.
\]

So \(E(s) = r^2 \) is constant and \(\frac{dE}{ds} \bigg|_{s=0} = 0 \).

We conclude

\[
g\left(\frac{\partial \alpha}{\partial s}(0, 1), \frac{\partial \alpha}{\partial t}(1) \right) = 0
\]

\[\text{tangent vector to geodesic sphere} \quad \text{tangent vector of geodesic}\]

Conclusion: Let \(c: [a, b] \to U_q = \{ \exp_q(v) \mid \|v\| < \varepsilon \} \backslash \{q\} \)

It may be written uniquely as \(c(t) = \exp_q(\langle u(t), v(t) \rangle) \)

where \(u: [a, b] \to \mathbb{R} \) satisfies \(0 < u(t) < \varepsilon \)

and \(v(t): [a, b] \to T_q M \) satisfies \(\|v(t)\| = 1 \).

Then

\[\ell(c) = |u(b) - u(a)|\]

with equality iff \(u \) is monotonic and \(v \) is constant.

Proof: Set \(\alpha(u, t) = \exp_q(\langle u, v(t) \rangle) \) so \(c(t) = \alpha(u(t), t) \)

Then \(\frac{dc}{dt} = \frac{\partial \alpha}{\partial u} u'(t) + \frac{\partial \alpha}{\partial t} \)

\[\left\| \frac{\partial \alpha}{\partial u} \right\| = \|v(t)\| = 1 \quad \text{and} \quad g\left(\frac{\partial \alpha}{\partial u}, \frac{\partial \alpha}{\partial t} \right) = 0 \text{ by Gauss' lemma}.\]

Thus

\[\left\| \frac{dc}{dt} \right\|^2 = \|u'(t)\|^2 + \left\| \frac{\partial \alpha}{\partial t} \right\|^2\]
\[L(c) = \int_a^b \left(\frac{dc}{dt} \right)^2 \, dt = \int_a^b \sqrt{ |v'(t)|^2 + \left| \frac{dx}{dt} \right|^2 } \, dt \geq |u(b) - u(a)| \]

with equality iff \(\frac{dx}{dt} = 0 \) and \(u'(t) \) always of the same sign,

iff \(v(t) \) is constant and \(u \) is monotonic.

This corollary says that the paths of minimal length joining \(S(q, u(a)) \)

to \(S(q, u(b)) \) are the geodesics.

Corollary: Let \(\varepsilon > 0 \) and \(W \) be as before.

Let \(\gamma \) be the geodesic of length \(\leq \varepsilon \) joining \(q \) to \(q' \).

Let \(c \) be any piecewise smooth path joining \(q \) to \(q' \).

Then

\[L(\gamma) \leq L(c) \]

with equality iff \(c \) is a reparametrization of \(\gamma \).

Proof: We have \(q' = \exp_q (rW) \) for \(r = L(\gamma) \), some \(W \) with \(|W| = 1 \).

For any \(\delta > 0 \), \(c \) must connect \(S(q, \delta) \) to \(S(q, r) \).

By the previous corollary

\[L(c) \geq r - \delta \]

Since this is true for every \(\delta \),

\[L(c) \geq r = L(\gamma) \]

Since equality can only hold if \(c \) is a

reparametrization of a geodesic ray between any two spherical shells,

we conclude that \(c \) would have to be a reparametrization of \(\gamma \)
in order for equality to hold.

Finally, we find that sufficiently short geodesics are

absolutely length minimizing between their endpoints.