Geodesics and Exponential map

Now that we know that critical points of \(E(\gamma) = \int g(j, j) \, dt \) satisfy \(\frac{D}{dt} \left(\frac{d\gamma}{dt} \right) = 0 \), we study this equation on its own.

Geodesic equation: This is the equation \(\frac{D}{dt} \left(\frac{d\gamma}{dt} \right) = 0 \) for a path \(\gamma: [a, b] \to M \). Conceptually, it says that the acceleration of \(\gamma \) is zero, so \(\gamma \) has constant velocity (in the covariant sense). Solutions are geodesics.

Let's express it in local coordinates \((x^1, \ldots, x^n) \), \(e_i = \frac{\partial}{\partial x^i} \):

\[
\gamma(t) = (\gamma^1(t), \ldots, \gamma^n(t)) \quad \frac{d\gamma}{dt} = \sum_{i=1}^{n} \frac{\partial}{\partial x^i} \gamma^i e_j
\]

for \(V(t) = \sum_{j=1}^{n} v^j(t) e_j \) vector field along \(\gamma \):

\[
\frac{DV}{dt} = \sum_{k=1}^{n} \left[\frac{d\gamma^k}{dt} + \sum_{i,j=1}^{n} \Gamma_{ij}^{k} \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} \right] e_k
\]

\[
\therefore \quad \frac{D}{dt} \left(\frac{d\gamma}{dt} \right) = \sum_{k=1}^{n} \left[\frac{d}{dt} \left(\frac{d\gamma^k}{dt} \right) + \sum_{i,j=1}^{n} \Gamma_{ij}^{k} \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} \right] e_k
\]

This is zero iff each component is zero, so the geodesic equation becomes the 2nd order system:

\[
(\forall k=1, \ldots, n) \quad \frac{d^2 \gamma^k}{dt^2} + \sum_{i,j=1}^{n} \Gamma_{ij}^{k} \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} = 0
\]
Since the geodesic equation is locally a 2nd order system of ODE with smooth coefficients, the initial value problem is well-posed if we specify the initial point and the initial velocity.

Theorem from ODE theory. For each \(p \in M \) and \(v \in T_p M \), there is an \(\varepsilon > 0 \) and a unique smooth path \(\gamma : [0, \varepsilon) \rightarrow M \) such that
\[
\begin{cases}
\frac{d}{dt} \left(\frac{d\gamma}{dt} \right) = 0 \\
\gamma(0) = p \\
\frac{d\gamma}{dt}(0) = v
\end{cases}
\]
that is, \(\gamma \) is a geodesic starting at \(p \) with initial velocity \(v \).

Moreover, \(\gamma \) depends smoothly on the initial data \((p, v) \in T M \) and for any compact subset \(K \subset T M \) of initial data, there is a single \(\varepsilon > 0 \) that works for all \((p, v) \in K \).

Proof. Omitted.

Remark. The example \(\mathbb{R}^2 - \{0, 0\} \) shows that the optimal \(\varepsilon \) may be finite; geodesics do not necessarily exist for all time.

Observation. If \(\gamma(t) \) satisfies \(\frac{d}{dt} \left(\frac{d\gamma}{dt} \right) = 0 \), and \(a \in \mathbb{R} \)
then \(\tilde{\gamma}(t) = \gamma(at) \) satisfies \(\frac{d}{dt} \left(\frac{d\tilde{\gamma}}{dt} \right) = 0 \).

Indeed, \(\frac{d\tilde{\gamma}}{dt}(t) = a \frac{d\gamma}{dt}(at) \) and
\[
\frac{d}{dt} \left(a \frac{d\gamma}{dt}(at) \right) = a^2 \frac{d}{dt} \left(\frac{d\gamma}{dt} \right)
\]
(Geodesics are homogeneous with respect to scaling \(t \).)
Exponential map: For \(q \in M \) and \(v \in T_q M \), let \(\gamma \) be the geodesic such that \(\gamma(0) = q \), \(\frac{d\gamma}{dt}(0) = v \).

Define \(\exp_q(v) := \gamma(1) \) (provided \(\gamma \) can be defined at \(t = 1 \)).

This defines a map \(\exp_q: U \to M \), where \(U \subset T_q M \)

1. Note that if \(\gamma(1) \) exists, then \(\gamma(t) = \exp_q(tv) \) for \(t \in [0, 1] \), by homogeneity.

2. By the ODE theorem, the domain \(U \) of \(\exp_q \) contains an open set around \(0 \). (\(\exists \varepsilon > 0 \) such that \(\forall v \) with \(||v|| \leq \varepsilon \), \(\exp_q(v) \) exists.)

Picture:

![Diagram of exponential map](image)

3. The geodesics in \(M \) passing through \(q \) are the images of the straight lines in \(T_q M \) under \(\exp_q \).