(1) Find two vector bundles over the same base manifold \(X \) which are isomorphic as vector bundles in the general sense, but not isomorphic over \(X \). That is to say, there is no isomorphism between the bundles covering the identity map on \(X \).

(2) Prove the statement that if two smooth maps \(f : X \to Z \) and \(g : Y \to Z \) are transverse, then the fiber product \(X \times_Z Y \) is a smooth submanifold of \(X \times Y \). (This is an application of the implicit function theorem.)

(3) Using the universal property of the fiber product, show that any morphism of bundles over possibly different bases

\[
\begin{array}{ccc}
E_1 & \xrightarrow{g} & E_1 \\
\downarrow \xi_1 & & \downarrow \xi_2 \\
X_1 & \xrightarrow{f} & X_2
\end{array}
\]

gives rise to a morphism over \(X_1 \)

\[
\begin{array}{ccc}
E_1 & \xrightarrow{f^*E_2} & f^*E_2 \\
\downarrow \xi_1 & & \downarrow f^*\xi_2 \\
X_1 & & X_1
\end{array}
\]

Show that the original morphism is a bundle map (= fiberwise isomorphism) iff the latter morphism is an isomorphism.

(4) Let \(\xi : E \to X \) be a rank \(r \) vector bundle. For an integer \(k, 1 \leq k \leq r \), a smooth \(k \)-frame in \(E \) is a collection of \(k \) smooth sections \(s_1, \ldots, s_k \) of \(\xi \) such that, for every \(x \in X \), the vectors \(s_1(x), \ldots, s_k(x) \in E_x \) are linearly independent. Show that a vector bundle is trivial if and only if it admits an \(r \)-frame (\(r \) = rank).

(5) Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a smooth function, and suppose that 0 is a regular value, so that \(X = f^{-1}(0) \) is a smooth submanifold of \(\mathbb{R}^n \). If \(i : X \to \mathbb{R}^n \) denotes the inclusion map, show that there is an isomorphism of bundles over \(X \):

\[
TX \oplus \mathbb{R} \cong i^*T\mathbb{R}^n
\]

(here \(TX \) denotes the tangent bundle of \(X \), \(\mathbb{R} \) denotes the trivial rank one bundle over \(X \), \(\oplus \) denotes the Whitney sum, and \(i^*T\mathbb{R}^n \) is the pullback of the tangent bundle of the ambient \(\mathbb{R}^n \)).

Formulate and prove the analogous statement for an \((n - k)\)-dimensional submanifold \(Y \subset \mathbb{R}^n \) which is transversely cut out by \(k \) smooth functions \(f_1, \ldots, f_k \):

\[
Y = \bigcap_{i=1}^k f_i^{-1}(0)
\]

(“Transversely cut out” means that 0 is a regular value of the map \(F = (f_1, \ldots, f_k) : \mathbb{R}^n \to \mathbb{R}^k \).

(6) (Optional, if you enjoy categories and functors, but the application is very important) Let \(\mathcal{V} \) denote the category of finite-dimensional \(\mathbb{R} \)-vector spaces and linear transformations, and
let $\mathcal{V}(X)$ denote the category of finite-rank vector bundles over X and morphisms over X (covering the identity map on X). For two categories \mathcal{C} and \mathcal{D}, let $\text{Fun}(\mathcal{C}, \mathcal{D})$ denote the category of functors $\mathcal{C} \to \mathcal{D}$, where morphisms are natural transformations.

In the lecture we associated to each functor

$$T : \mathcal{V} \times \cdots \times \mathcal{V} \to \mathcal{V}$$

and each collection of vector bundles $\xi_i : E_i \to X$, $i = 1, \ldots, n$ a vector bundle

$$T(\xi_1, \ldots, \xi_n) : T(E_1, \ldots, E_n) \to X$$

(a) Show that this construction is compatible with morphisms in $\mathcal{V}(X)$. That is, show that it defines a functor

$$T(X) : \mathcal{V}(X) \times \cdots \times \mathcal{V}(X) \to \mathcal{V}(X).$$

(b) Show that this construction is compatible with natural transformations. That is show that it defines a functor

$$\text{Fun}(\mathcal{V}^n, \mathcal{V}) \to \text{Fun}(\mathcal{V}(X)^n, \mathcal{V}(X)), \quad T \mapsto T(X).$$

(c) As an application, deduce that for any vector bundles E, F over X, there are natural morphisms over X:

$$E^\vee \otimes F \to \mathcal{H}om(E, F)$$

$$\mathcal{H}om(E, F) \otimes E \to F$$

$$E \to (E^\vee)^\vee$$

$$E^\vee \otimes E \to \mathbb{R}$$

(7) A **exact sequence** of vector bundles over X is a sequence of morphisms over X

$$\cdots \to E \to F \to G \to \cdots$$

such that for all $x \in X$, the sequence

$$\cdots \to E_x \to F_x \to G_x \to \cdots$$

on fibers over x is an exact sequence of vector spaces. Let 0 denote the rank 0 vector bundle $\text{id} : X \to X$.

(a) Show that a fiberwise injective morphism $0 \to E' \to E$ may be completed to a short exact sequence of vector bundles over X

$$0 \to E' \to E \to E'' \to 0$$

(b) Show that a fiberwise surjective morphism $E \to E'' \to 0$ may be completed to a short exact sequence of vector bundles over X.

$$0 \to E' \to E \to E'' \to 0$$

(c) Show by a counterexample that not every morphism over X has a kernel, where a **kernel** for a morphism $E \to F$ is a vector bundle K fitting into an exact sequence

$$0 \to K \to E \to F$$

(d) Show by a counterexample that not every morphism over X has a cokernel, where a **cokernel** for a morphism $E \to F$ is a vector bundle C fitting into an exact sequence

$$E \to F \to C \to 0$$