Monodromy II:

Let \(F: X \to Y \) be a nonconstant map between compact R.S. If \(F \) has ramification points, it is not a covering map.

Let \(R = \{ p \in X | \text{mult}_p F > 1 \} \subset X \) be the set of ramification points. Let \(B = F(R) \subset Y \).

Let \(V = Y \setminus B \) and \(U = X \setminus F^{-1}(B) \).

[Note \(F^{-1}(B) \neq F(F(R)) \supseteq R \) but may not be equal to it.]

Thus \(F\mid U: U \to V \) is an unramified hol map, \(U, V \) not compact. By local structure of holomorphic maps \(F\mid U \) is a covering map of degree \(\deg(F) = d \).

Now apply theory of monodromy: Pick basepoint \(q \in V \).

Get monodromy representation \(g: \pi_1(V, q) \to S_d \).

\(X \) connected \(\Rightarrow U \) connected \(\Rightarrow \text{im}(g) \) transitive.

We call this the monodromy representation of the map \(F \).

We now claim there is a bijection:

\[
\begin{align*}
\{ \text{isomorphism classes} \} & \quad \leftrightarrow \quad \{ \text{group homomorphisms} \} \\
\{ \text{connected covers} F: U \to V \} & \quad \leftrightarrow \quad \{ \text{group homomorphisms} \}
\end{align*}
\]

\(g: \pi_1(V, q) \to S_d \)

with transitive image (up to conjugacy in \(S_d \)).

In one direction we take monodromy. In the other, if \(g \) is given, let \(H = \ker(g) \subset \pi_1(V, q) \). Then let \(U = U_0/H \), where \(U_0 \) is the universal cover of \(V \). The monodromy rep of this cover will be conjugate to \(g \).
Another general fact is that if \(F : U \rightarrow V \) is a covering, and \(V \) is a Riemann surface, there is a unique complex structure on \(U \) such that \(F \) is holomorphic.

If \(W \subset U \) is an open set so small that \(F\mid W : W \rightarrow V \) is homeo onto its image, let \(\phi \) be a chart on \(V \), and let \(\phi \circ F\mid W \) be a chart on \(W \). So we conclude.

Proof: For a Riemann surface \(V \), there is a bijection

\[
\left\{ \text{iso classes of unramified hol maps} \right\} \leftrightarrow \left\{ \text{homomorphisms} \right\}
\]

\[
\left\{ F : U \rightarrow V \right\} \leftrightarrow \left\{ g : \pi_1(V, q) \rightarrow S_d \right\}
\]

with transitive image up to conjugacy in \(S_d \).

What happens near branch points? For \(b \in B \subset Y \) a branch pt., let \(W \ni b \) be a small open disk. Denote \(U_1, \ldots, U_k \)
the points of \(F^{-1}(b) \), and let \(m_i = \text{mult}_{U_i}(F) \).

By local structure of holomorphic maps, one can choose \(W \)
small enough that \(F^{-1}(W) \) is the union of disks \(U_1, \ldots, U_k \)
s.t. \(u_i \in U_i \) and local moves \(\bar{z}_i \) on \(U_i \) and \(w \) on \(W \)
so that \(F \) has the form \(W = \bar{z}_i^{m_i} \) on \(U_i \).

- \(U_2 \) \(m_2 = 3 \) \(\cdots \) \(n_2 \)
- \(U_1 \) \(m_1 = 2 \) \(\cdots \) \(n_1 \)
- \(W \) \(* b \)

Let \(\gamma \) be a small loop in \(W \setminus \{ b \} \) that
winds once around \(b \). By monodromy constraint
we get a permutation \(\sigma \) of \(F^{-1}(\gamma(0)) \).

\[
F^{-1}(\gamma(0)) = \bigcup_{i=1}^{k} (U_i \cap F^{-1}(\gamma(0)))
\]

\(\sigma \) preserves each subset \(U_i \cap F^{-1}(\gamma(0)) \), and in fact acts on this set by cyclic permutation. We can deduce this from the local model \(W = z_i^{m_i} \cap U_i \).
Thus, the permutation σ decomposes into disjoint cycles of
lengths m_1, m_2, \ldots, m_k.

If the base point q is not contained in W, it's no problem,
we can let α be a path from q to $y(0) = y(1) \in W$,
and then consider the loop $\alpha^{-1} y \alpha$ based at q.

Now we want to reconstruct the whole holomorphic map $F: X \to Y$
from its unramified part $F: U \to V$.

Near a branch point $b \in Y$, we have a small punctured disk
\tilde{W}. It is the domain of hole chart on U. Suppose the
cycle structure of the monodromy around b is (m_1, \ldots, m_k).
Then, by the classification of covering spaces of the punctured
disk, the preimage $\tilde{F}(\tilde{W})$ is a disjoint union of
connected covers $\tilde{U}_i \to \tilde{W}$ of degree m_i. We know
in this case that \tilde{U}_i is also a punctured disk, so it
defines a hole chart on U. Filling these holes,
we can add k points mapping to b. Doing this for
every branch point, we can recover X, and the map $F: X \to Y$.

This gives us the inverse to the map $\{ F: X \to Y \} \to \{ \tilde{\rho}: \tilde{\pi}_1(V_q) \to S_d \}$
and establishes the following correspondence:
Prop: let \(Y \) be a compact R.S., \(B \subset Y \) a finite subset, let \(q \in Y \setminus B \)
there is a bijection
\[
\{ \text{iso. classes of holo. maps } F : X \rightarrow Y \} \leftrightarrow \{ \text{group homomorphisms } \xi : \pi_1(Y \setminus B, q) \rightarrow S_d \}
\]
with transitivé image up to conjugacy in \(S_d \)

(Note we say "continued" in \(B \) because the monodromy could be trivial around certain points \(b \in B \), in which case the corresponding map is unramified at \(b \).)

Maps to \(\mathbb{P}^1 \): If we let \(Y = \mathbb{P}^1 \), \(B = \{ b_1, \ldots, b_n \} \),
then \(\pi_1(\mathbb{P}^1 \setminus \{ b_1, \ldots, b_n \}, q) \) is generated by \(n \) loops \(\gamma_1, \ldots, \gamma_n \) around the points \(b_i \), subject to the relation \(\prod_{i=1}^n \gamma_i \gamma_i^{-1} = 1 \). (Thus it is isomorphic to a free group on \(n-1 \) generators.)

The monodromy data is there for a collection \(\sigma_1, \ldots, \sigma_n \in S_d \) such that \(\sigma_1 \cdots \sigma_n = 1 \), and the subgroup generated by
\(\{ \sigma_i : i = 1, \ldots, n \} \) is transitivé.

Prop: \(\{ \text{ iso. classes of holo. maps } F : X \rightarrow \mathbb{P}^1 \} \) of degree \(d \) with branch points contained in \(B \)
\[
\leftrightarrow \{ \text{ conjugacy classes of } n \text{-tuples } (\sigma_1, \ldots, \sigma_n) \in S_d \text{ such that } \sigma_1 \cdots \sigma_n = 1 \text{ and } \langle \sigma_1, \ldots, \sigma_n \rangle \leq S_d \text{ is transitivé} \}
\]
Further more, if the cycle structure of \(\sigma_i \) is \((m_{i1}, \ldots, m_{ik_i}) \),
then \(F^{-1}(b_i) \) consists of points \(u_{ij} \) (\(j = 1, \ldots, k_i \)) such that
\(\text{mult}_{u_{ij}}(F) = m_{ij} \).