Constant coefficient linear homogeneous equations

This is an equation like

\[a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = 0 \]

where \(a_n, a_{n-1}, \ldots, a_1, a_0 \) are constants.

The basic idea is to try a solution of the form \(e^{rx} \)

\[y = e^{rx}, \quad y' = re^{rx}, \quad y'' = r^2 e^{rx}, \ldots, \quad y^{(n)} = r^n e^{rx} \]

Then \(a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = 0 \)

becomes

\[a_n r^n e^{rx} + a_{n-1} r^{n-1} e^{rx} + \ldots + a_1 re^{rx} + a_0 e^{rx} = 0 \]

\[(a_n r^n + a_{n-1} r^{n-1} + \ldots + a_1 r + a_0) e^{rx} = 0 \]

Thus \(e^{rx} \) will be a solution if

\[a_n r^n + a_{n-1} r^{n-1} + \ldots + a_1 r + a_0 = 0 \]

Characteristic Equation.

To get characteristic equation from the original homogeneous linear differential equation, replace \(y \rightarrow 1, \ y' \rightarrow r, \ y'' \rightarrow r^2, \) etc \(y^{(n)} \rightarrow r^n \)

To summarize: If \(r \) solves characteristic equation, then \(y = e^{rx} \) solves the differential equation.
Is this all there is to it?
If the solutions of the characteristic equation are real and distinct, then yes.

Let \(n \) = order of differential equation = degree of characteristic equation.

A degree \(n \) polynomial equation such as
\[
a_n r^n + a_{n-1} r^{n-1} + \cdots + a_1 r + a_0 = 0
\]
has \(n \) solutions \(r_1, \ldots, r_n \) which may be complex (at \(b + ai \))
and which may be repeated such that the polynomial factors as
\[
a_n (r - r_1)(r - r_2)(r - r_3) \cdots (r - r_n)
\]

Theorem
If the characteristic equation has \(n \) solutions \(r_1, r_2, \ldots, r_n \)
that are all distinct and real, then the general solution is
\[
y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} + \cdots + c_n e^{r_n x}
\]

Fact for \(r_1, r_2, \ldots, r_n \) distinct, the
functions \(e^{r_1 x}, e^{r_2 x}, \ldots, e^{r_n x} \) are linearly independent

[Follows from the relation between the discriminant and
the Vandermonde determinant, if you care.]
Example \[y^{(3)} - 3y'' + 2y' = 0 \]

Characteristic equation \[r^3 - 3r^2 + 2r = 0 \]
\[r(r^2 - 3r + 2) = 0 \]
\[r(r-1)(r-2) = 0 \]

So the roots are \(r_1 = 0 \), \(r_2 = 1 \), \(r_3 = 2 \) — Real, distinct.

General solution \[y(x) = c_1 e^{0x} + c_2 e^{x} + c_3 e^{2x} = c_1 + c_2 e^x + c_3 e^{2x} \]

What if a root is repeated?

Example \[y'' - 2y' + y = 0 \]
\[r^2 - 2r + 1 = 0 \]
\[(r-1)^2 = 0 \]

\(\iff \) double roots \(r_1 = 1 \), \(r_2 = 1 \)

So \[y = e^{r_1 x} = e^x \text{ is a solution} \]

The general solution is \(\boxed{\text{NOT}} \) \[y(x) = c_1 e^x + c_2 e^x \]

because \(e^x \) and \(e^x \) are not linearly independent!

We need ANOTHER solution that CANNOT be found using the characteristic equation.

This requires some work, so we are going to introduce some theory that will make it more comprehensible.
Constant coefficient differential operators.

What is \(\frac{d}{dx} \)? Well \(\frac{d}{dx}[f(x)] = f'(x) \) derivative.

The symbol \(\frac{d}{dx} \) represents the operation of differentiation, the operation that takes a function and produces its derivative.

\(\frac{d}{dx} \) is therefore called the "Derivative operator".

Similarly \(\frac{d^2}{dx^2} \) is an operator called the "second derivative operator".

And so on \(\frac{d^2}{dx^2}, \ldots, \frac{d^n}{dx^n} \) \(n \)-th derivative operator.

Now we can define algebraic operations on operators then solving:

If \(A \) is an operator, then \(A^2 \) does the operation twice.

So if \(D = \frac{d}{dx} \) then \(D^2 = \) take derivative twice \(= \frac{d^2}{dx^2} \)

and \(D^3 = \frac{d^3}{dx^3}, \ldots, D^n = \frac{d^n}{dx^n} \)

We can also combine differential operators by addition

\[L = D^2 - 2D + 3 \] - This is the operator that multiplied by 3

\[L = \frac{d^2}{dx^2} - 2 \frac{d}{dx} + 3 \]

Then \(L[f(x)] = f''(x) - 2f'(x) + 3f(x) \)
A general constant coefficient linear differential operator looks like

\[L = a_n D^n + a_{n-1} D^{n-1} + \cdots + a_1 D + a_0 \]

\[L \cdot y = (a_n D^n + a_{n-1} D^{n-1} + \cdots + a_1 D + a_0) \cdot y \]

\[= a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_1 y' + a_0 y \]

So this is a new notation for the LHS’s of the differential equations we want to consider.