Problem 1 (20 pts)

Let

\[A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & k & 0 \\ 0 & 0 & 0 \end{pmatrix}, k \in \mathbb{R}. \]

(a) Find all values of \(k \) such that \(A \) is diagonalizable over \(\mathbb{R} \).

(b) For \(k = 0 \), determine the determinant, eigenvalues and eigenspaces of \(A^2 - A \).

(a) \(k \in \mathbb{R} - \{ 0, \frac{1}{3} \} \).

2) If \(k \notin \{ 0, \frac{1}{3} \} \), \(A \) has three distinct eigenvalues \(1, 0, 1 \), \(\Rightarrow A \) is diagonalizable over \(\mathbb{R}^2 \).

2) If \(k = 0 \), \(\text{spec}(A) = \{ 0, 1, \frac{1}{3} \} \)

\[m_{\lambda_1} = 2, \quad m_{\lambda_2} = \dim N \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 2 \]

\[m_{\lambda_2} = m_{\lambda_2} = 1. \Rightarrow A \text{ is diagonalizable.} \]

3) If \(k = \frac{1}{3} \), \(\text{spec}(A) = \{ 0, 1, \frac{1}{3} \} \)

\[m_{\lambda_1} = 2, \quad m_{\lambda_2} = \dim N \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 1. \]
(6). \[A^2 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = A \]

\[\Rightarrow A^2 - A = 0. \]

\[\det M = 0. \]

\[\lambda_1 = \lambda_2 = 0, \lambda_3. \]

\[E_{\lambda} = \text{span} \{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \} \]
Problem 2 (20 pts)

(a) Prove that if A is a diagonalizable matrix over \mathbb{C}, then A^2 is also diagonalizable over \mathbb{C}.

(b) Find a matrix A such that A^2 is diagonalizable over \mathbb{C} although A is NOT diagonalizable over \mathbb{C}.

(a). Let A be a diagonalizable matrix over \mathbb{C}. Then, there exist D (diagonal matrix) and Q (invertible matrix) such that

$$
D = Q^{-1}AQ.
$$

It follows that

$$
D^2 = (Q^{-1}AQ)(Q^{-1}AQ) = Q^{-1}A^2Q.
$$

Where D^2 is also a diagonal matrix. Therefore A^2 is diagonalizable over \mathbb{C}.

(b). Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ then $A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Clearly A^2 is diagonalizable over \mathbb{C} (it is a diagonal matrix).

However A is not diagonalizable since

$$
M_{\lambda=0} = 2 \quad \text{and} \quad M_{\lambda=0} = \dim \ker \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 1.
$$
Problem 3 (20 pts)

(a) Prove that if A and B are similar matrices, and A is singular, then B is singular.

(b) Prove that if A and B are similar matrices, and A is nilpotent, then B is nilpotent.

\[(a). \quad A \text{ is singular if and only if } \det A = 0.\]

If $A \sim B$ then $B = Q^{-1}AQ$. (A invertible). Thus:

\[
\det B = \det(Q^{-1}AQ) = \det(Q^{-1})\det A \cdot \det Q
\]

\[
= \frac{1}{\det Q} \cdot \det A \cdot \det Q
= \det A = 0.
\]

Thus B is singular.

\[(b). \quad \text{If } A \text{ is nilpotent, } \exists k \in \mathbb{Z}^+: A^k = 0.\]

Therefore, since $A \sim B$,

\[
B = Q^{-1}AQ \quad \text{and} \quad B^k = Q^{-1}A^kQ = Q^{-1}0Q = 0.
\]

Thus B is nilpotent.

\[\text{1} \text{Recall that a matrix } M \text{ is nilpotent if there exists a positive integer } k \text{ such that } M^k = 0.\]
Problem 4 (20 pts)

Use eigenvalues and eigenvectors to find the canonical matrix representation of the reflection in \mathbb{R}^2 with respect to the line $y = 3x$.

The eigenspaces for the reflection matrix are

$$E_1 = \text{span} \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
$$E_2 = \text{span} \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

The corresponding eigenvalues are

$$\lambda_1 = 1$$
$$\lambda_2 = -1$$

Therefore:

$$D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$Q = \begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix}$$

and hence

$$\left[R_{y=3x} \right]_P = Q D Q^{-1} = \begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1/10 & 3/10 \\ -3/10 & 1/10 \end{pmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} -4 & 3 \\ 3 & 4 \end{pmatrix}$$
Problem 5 (20 pts)

For the following statements, determine whether they are true or false. Justify your answer in a few words (provide a counterexample when necessary).

(a) If $T: V \to V$ is a linear transformation, and α and β are bases for V, then $\det([T]_{\alpha}) = \det([T]_{\beta})$. \[\text{T}\]

(b) If two 2×2 matrices A and B have the same trace and determinant, then A is similar to B. \[\text{F}\]

(c) If the set of column vectors of a $n \times n$ matrix M is a generating set for \mathbb{F}^n, then $\det M \neq 0$. \[\text{T}\]

(d) If the set of column vectors of a $n \times n$ matrix M is a linearly independent set for \mathbb{F}^n, then $\det M \neq 0$. \[\text{T}\]

(e) If all the eigenvalues of a matrix M are 0, then $M = 0$. \[\text{F}\]

(a) True, \(\text{since } [T]_{\alpha} = Q^{-1} [T]_{\beta} Q\) (Q is the change of basis matrix)

Thus \([T]_{\alpha} \text{ and } [T]_{\beta}\) \[\Rightarrow \det [T]_{\alpha} = \det [T]_{\beta}\].

(b) False \[
A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
\]

\[\det A = \det B = \text{tr}A = \text{tr}B = 0.
\]

But $A \neq B$.

(c) True. \(n\)-vectors in a generating set for $1\mathbb{F}^n$ form a basis of \mathbb{F}^n (replacement theorem) \[\Rightarrow \det (1\mathbb{F}^n) \neq 0\].

(d) True. By linearity of the determinant.

(e) False. \(M = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\) \[\text{spec}(M) = \{0\}\].