Problem 1

(a) Solution: Singular. We have that the RREF for this matrix is \[
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
\] so the homogeneous system has infinitely many solutions (one free variable).

(b) Solution: Nonsingular. We have that the RREF for this matrix is
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\] and by the equivalence theorem, since the matrix is equivalent to the identity matrix, it is nonsingular.

(c) Solution: Nonsingular. Nonsingular. We have that the RREF for this matrix is
\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\] and by the equivalence theorem, since the matrix is equivalent to the identity matrix, it is nonsingular.

(d) Nonsingular. We have that the RREF for this matrix is
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\] and by the equivalence theorem, since the matrix is equivalent to the identity matrix, it is nonsingular.

(e) Solution: Singular. We have that the RREF for this matrix is \[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\] so the homogeneous system has infinitely many solutions (one free variable).
(f) Solution: Nonsingular. We have that the RREF for this matrix is \[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\] and by the equivalence theorem, since the matrix is equivalent to the identity matrix, it is nonsingular.

Problem 2

(a) Solution: Let \(U_n(\mathbb{F}) \) be the set of upper triangular matrices in \(M_{n \times n}(\mathbb{F}) \). By Theorem 1.3 from the textbook, it suffices to check the following:

- (Closure under +): Let \(M, N \in U_n(\mathbb{F}) \). By the definition of the sum of two matrices, \((M + N)_{ij} = M_{ij} + N_{ij}\), therefore, by definition of upper triangular matrices, if \(i > j \), then \(M_{ij} = N_{ij} = (M + N)_{ij} = 0 \), thus \(M + N \) is upper triangular.

- (Closure under scalar multiplication): Let \(M, N \in U_n(\mathbb{F}) \) and \(\lambda \in \mathbb{F} \). Then, by definition of scalar multiplication, \((\lambda M)_{ij} = \lambda M_{ij} \). Since \(M \) is upper triangular, if \(i > j \), then \((\lambda M)_{ij} = \lambda M_{ij} = \lambda \cdot 0 = 0\), thus \((\lambda M)\) is upper triangular.

Therefore, \(U_n(\mathbb{F}) \) is a vector subspace of \(M_{n \times n}(\mathbb{F}) \), as desired.

(b) Solution: Let \(A \) be an upper triangular matrix. Consider \(B = RREF(A) \). By the equivalence theorem, \(A \) is nonsingular if and only if \(B = I_n \). This occurs if and only if \(B \) has \(n \) pivots, and that occurs if and only if the diagonal entries are non zero, since the diagonal elements that are nonzero stay being nonzero after linear combinations of the rows.

Problem 3

Let \(A \in M_{n \times n}(\mathbb{F}) \) be a square matrix and let \(A^t \) denote the transpose of the matrix \(A \), namely, \(A^t_{ij} := A_{ji} \), \(\forall 1 \leq i, j \leq n \).

(a) Solution: Suppose that \(A \in M_{m \times n}(\mathbb{F}) \) and \(B \in M_{n \times p}(\mathbb{F}) \). We have that \(AB \in M_{m \times p}(\mathbb{F}) \). Now, by the definition of transpose and matrix multiplication, it follows that:

\[(AB)^t_{ij} = (AB)_{ji} = \sum_{k=1}^{n} A_{jk} B_{ki} = \sum_{k=1}^{n} B_{ki} A_{jk} = \sum_{k=1}^{n} B^t_{ik} A^t_{kj} = (B^t A^t)_{ij}\]

therefore the matrices \((AB)^t \) and \(B^t A^t \) have identical entries, thus they are equal.

(b) Solution: By the equivalence theorems, \(A \) is nonsingular if and only if \(A \) is invertible. We will prove then the following equivalent proposition: \(A \) is invertible if and only if \(A^t \) is invertible. Now, \(A \) is invertible if and only if
there is a matrix B such that $AB = I_n$. By part (a) it follows that $I_n^t = I_n = (AB)^t = B^tA^t$
thus, B^t is invertible (with inverse A^t).

Problem 4

(a) **Solution**: Linearly independent. If $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, then $RREF(A) = I_3$, therefore A is nonsingular and this implies that the linear system $Ax = 0$ has unique trivial solution, therefore the vectors are linearly independent.

(b) **Solution**: Linearly dependent. The following is a linear combination of the vectors: $\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \right\} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

c) **Solution**: Linearly dependent. The following is a linear combination of the vectors:

$$x^2 = 1/2(1 + x^2) - 1/2(1 - x^2).$$

d) **Solution**: Linearly independent. By a theorem proven in class, a set of two elements is linearly dependen if an only if one vector is a scalar multiple of the other. If $M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}$, if $M = \lambda N$, it would imply that, in one hand, $\lambda = 1$, since $M_{12} = N_{12}$ and in the other hand $\lambda = -1$, since $M_{11} = -N_{11}$, therefore, there is no value of λ.

Problem 5

(a) **(One of the infinitely many) Solution**:

$$\beta = \{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \}$$

(b) **Solution**: By contraposition. It is equivalent to prove that, if $\{u + v, u - v\}$ is a linearly dependent set, then $\{u, v\}$ is a linearly dependent set. Now, if $\{u + v, u - v\}$ is linearly dependent, then there exists $\lambda \in F$ such that $u + v = \lambda(u - v)$. There are two cases:

* $\lambda = 1$. In this case, $2v = 0$, then $v = 0$.

* $\lambda \neq 1$. In this case $u = (\lambda + 1)/(\lambda - 1)(v)$ and this implies that u and v are linearly dependent.